High-strength scaffolds for bone regeneration
نویسندگان
چکیده
منابع مشابه
High strength bioactive glass-ceramic scaffolds for bone regeneration.
This research work is focused on the preparation of macroporous glass-ceramic scaffolds with high mechanical strength, equivalent with cancellous bone. The scaffolds were prepared using an open-cells polyurethane sponge as a template and glass powders belonging to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O. The glass, named as CEL2, was synthesized by a conventional melting-quenching route...
متن کاملMetallic Scaffolds for Bone Regeneration
Bone tissue engineering is an emerging interdisciplinary field in Science, combining expertise in medicine, material science and biomechanics. Hard tissue engineering research is focused mainly in two areas, osteo and dental clinical applications. There is a lot of exciting research being performed worldwide in developing novel scaffolds for tissue engineering. Although, nowadays the majority o...
متن کاملNonwoven scaffolds for bone regeneration
1. The structure of bone and the mechanisms for self-repair Bone is one of the most commonly transplanted tissues, with 2.2 million bone grafts performed annually worldwide (Tronci et al., 2013a). Surgeons face a diverse spectrum of clinical challenges in bone reconstruction, and this diversity reflects the variety of anatomic sites, defect sizes, mechanical stresses, and available soft tissue ...
متن کاملHigh-strength silk protein scaffolds for bone repair.
Biomaterials for bone tissue regeneration represent a major focus of orthopedic research. However, only a handful of polymeric biomaterials are utilized today because of their failure to address critical issues like compressive strength for load-bearing bone grafts. In this study development of a high compressive strength (~13 MPa hydrated state) polymeric bone composite materials is reported, ...
متن کاملEngineering Pre-vascularized Scaffolds for Bone Regeneration.
Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinspired, Biomimetic and Nanobiomaterials
سال: 2015
ISSN: 2045-9858,2045-9866
DOI: 10.1680/bbn.14.00019